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Abstract 

In this study, the nonlinear dynamic response of basalt/nickel FGM composite plates has been investigated under blast 
load. Homogenous Laminated Model (HLM) and Power-Law Model (PLM) are used to model the basalt/nickel FGM 
composite plates. von Kármán large deflection theory of thin plates are considered for the geometric nonlinearity effects. 
The equations of motion for the plate are derived by the use of the virtual work principle. Approximate solutions are 
assumed for the space domain and substituted into the equations of motion. Then the Galerkin Method is used to obtain the 
nonlinear differential equations in the time domain. The Finite Difference method is applied to solve the system of coupled 
nonlinear equations. The effects of two different approximations in order to model the basalt/nickel FGM composite plates 
have been investigated and the results are discussed.  
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1. Introduction 

In recent years, Functionally Graded Materials (FGM) plays an important role among the advanced composite 
materials. Laminated composites are also widely used in many industrial applications such as aerospace structures, 
marine structures and automobiles. Therefore, the use of the laminated FGM composite plates has many application 
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areas. The material composition of FGM varies continuously along the thickness direction of the laminates. In other 
words, two dissimilar materials, such as one is a ceramic and the other one is a metal, have been combined in order 
to form new material which has continuously changing mechanical properties along thickness direction. This is 
obtained by gradually varying the volume fraction of the constituent materials. Due to grading properties 
continuously, the disadvantages of interfaces can be eliminated. 

The use of FGM was first introduced by a group of Japan Scientist in 1984 as ultrahigh temperature resistant 
materials [1]. Later, several numerical studies presented about FGM in the literature. Woo and Meguid [1] studied 
the large deflection of FGM plates and shallow shells under transverse loading and temperature field. Praveen and 
Reddy [2] investigated the response of FGM ceramic-metal plates using finite element method. They consider the 
volume fraction of the ceramic and metallic constituent using a simple power-law distribution. Bank-Sills et al. [3] 
modeled FGM in five different models, two of which simulate fiber phases and three simulate particle phases. They 
concluded that a continuously changing material model is a good candidate for carrying out dynamic analyses of 
FGM. Aksoylar et al. [4] analyzed the nonlinear transient dynamic behavior of fiber-metal laminated (FML) 
composite plates and functionally graded (FGM) thin plates under blast load with developed mixed FEM by both 
experimental and numerical techniques.  

Moreover, several studies related to the effects of blast load on the composite plate structures are presented in the 
literature up to now. To name a few, Hause [5] has developed the foundation of the theory of functionally graded 
plates with simply supported edges, under a Friedlander explosive air-blast load. Abrate [6] examined transient 
response of beams, plates, and shells to impulsive loads using the modal expansion technique for pulse shapes 
typically observed during impacts and explosions. Baştürk et al. [7] investigated the nonlinear dynamic response of 
laminated basalt composite plates under dynamic loads. Kazancı and Mecitoğlu [8] investigated nonlinear damped 
vibrations of a laminated composite plate subjected to blast load. Chandrasekharappa and Srirangarajan [9] 
investigated nonlinear response of elastic plates to pulse excitations. Kazancı [10] conducted a parametric study on 
the nonlinear dynamic response of laminated composite sandwich plates. Kazancı and Mecitoğlu [11] studied the 
nonlinear vibration of a laminated composite plate subjected to blast load. Süsler et al. [12] investigated the 
nonlinear dynamic behavior of tapered laminated plates subjected to blast load. An analytic tool was presented for 
the nonlinear dynamic behavior of hybrid laminated composite plates under several dynamic loads by Şenyer and 
Kazancı [13]. Süsler et al. [14] investigated the nonlinear dynamic behavior of simply supported tapered sandwich 
plates subjected to air blast loading theoretically and numerically. Baştürk et al. [15] studied on the nonlinear 
dynamic response of a hybrid laminated composite plate composed of basalt, kevlar/epoxy and glass/epoxy under 
the blast load including damping effects. 

In last few decades, there has been increasing usage in advanced composite materials for structures due to their 
preferable properties such as basalt. Basalt fibers reinforced composites have higher properties over the other 
composites such as: better impact strength and good mechanical performance, in particular at high temperature. 
Additionally, due to the potential low cost of basalt composites, new basalt fiber composite applications could be 
widely used in near future.  

As can be seen from the above mentioned literature summary, although the use of basalt in the composite 
materials increases rapidly, there is no study about the use of basalt as ceramic material in the functionally graded 
material. Therefore, in this study, it is decided to use the basalt as ceramic material in the FGM due to its high 
strength to the temperature. In the aerospace applications, such as turbine blade nickel based super alloys are used 
due to their high temperature strength, toughness, and resistance to degradation in corrosive or oxidizing 
environments. Therefore, it is also decided to use the nickel for the metal part of the FGM. In this study, the 
nonlinear dynamic response of basalt/nickel FGM composite plates has been investigated under blast load. Two 
different approximations are taken into account to model the basalt/nickel FGM composite plates such as 
Homogenous Laminated Model (HLM) and Power-Law Model (PLM). von Kármán large deflection theory of thin 
plates are considered for the geometric nonlinearity effects. The boundary conditions are selected as all edges 
simply supported. The equations of motion for the plate are derived by the use of the virtual work principle. 
Approximate solutions are assumed for the space domain and substituted into the equations of motion. Then the 
Galerkin Method is used to obtain the nonlinear differential equations in the time domain. The Finite Difference 
Method is applied to solve the system of coupled nonlinear equations. The effects of two different approximations in 
order to model the basalt/nickel FGM composite plates have been investigated.  
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2. Modeling of FGM Plate 

 
A laminated basalt/nickel functionally graded composite plate subjected to blast load is considered. The material 

properties of basalt and nickel is described in Table 1 and the rectangular plate with the length a=0.22 m, the width 
b=0.22 m, and the thickness h=0.005m, is depicted in Fig. 1. The Cartesian axes are used in the derivation.  

In this study, the FGM plate has been modeled in two different ways such as Homogenous Laminated Model 
(HLM) and Power-Law Model (PLM). In all cases, the thickness of the plate is divided into a finite number of layers 
and the equivalent effective material properties of these layers are defined. It is selected to divide the FGM plate to 
20 in all cases as seen in Fig. 1. 

Table 1.Material properties of basalt and nickel. 

Material Modulus of 
Elasticity (GPa) 
(E1=E2) 

Shear Modulus 

G12 (GPa) 

Poisson’s Ratio 

ν 

Density 

ρ (kg/m3) 

Basalt 25 4 0.086 2800 

Nickel 200 80 0.322 8900 

 

 

Fig. 1. Homogenous Laminated basalt/nickel FGM composite plate (20 layers). 
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2.1. Homogenous Laminated Model (HLM) 

In this approach (as described in [3]), the plate is divided into 20 layers. The ceramic volume fraction (Vc) of 
the upper layer is 1 which means fully ceramic (for this study basalt), and the ceramic volume fraction of the lower 
layer is 0 which means fully metal (for this study nickel). In all cases, Vc +Vm=1 should be obtained. “c” denotes 
ceramic, basalt in this case, and “m” denotes metal, nickel in this case. The other layers have the linear change in the 
ceramic volume fraction from 1 to 0. The material properties are calculated from Eq.(1). 

 

         (1) 

All material properties such as Young’s Modulus (E), Shear Modulus (G), Poisson’s ratio (ν) and density (ρ) 
could be able to calculate from Eq.(1).  

 

2.2. Power-Law Model (PLM) 

The material properties vary non-symmetrically through the thickness for Power-Law Model. This model is 
defined in [1,2] as following: 

          (2) 

         (3) 

The thickness of the plate is divided into a finite number of homogenous layers and the equivalent effective 
material properties of these layers are defined as the average value of Eq.(3) within the layer: 

        (4) 

where L is the total number of layers that is used for modeling the equivalent laminates corresponding to the 
FGM material. 

 

3. Equations of motion 
 

A laminated basalt composite plate subjected to blast load is considered. The rectangular plate with the length 
a, the width b, and the thickness h, is depicted in Fig. 1. The Cartesian axes are used in the derivation.  

Using the constitutive equations and the strain-displacement relations in the virtual work and applying the 
variational principles, nonlinear dynamic equations of a laminated composite plate can be obtained in terms of mid-
plane displacements as follows 
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 (5) 

where Lij and Ni denote linear and nonlinear operators, respectively. m  is the mass of unit area of the mid-plane, qx, 
qy and qz are the load vectors in the axes directions. The explicit expressions of the operators can be found in 
Kazancı and Mecitoğlu [11].  
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Fig. 2. Exponential blast loading. 

If the blast source is distant enough from the plate, exponential air blast load can be described in a functional 
form such as the Friedlander equation (Gupta et al. [16]) as  

m p
pt / t

P(t) P (1 t / t ) e
                  (6) 

where the negative phase of the blast is included. In this equation, Pm is the peak blast pressure, tp is positive phase 
duration, and  is waveform parameter (see Figure 2). 

4. Numerical Results 

First of all, the structural model for Homogenus Laminated Model was validated with ANSYS finite element 
software results. The maximum blast pressurePm in Eq.(6) is taken to be 1000 kPa for the plate and all edges are 
simply supported. The other parameters of the Friedlander function given in Eq.(6) are chosen as = 0.35 and 
tp=0.0018 s. The displacement-time histories of the plate center obtained by using finite difference solution method 
and compared with ANSYS results in Figure 3. However, there is a discrepancy after the strong blast (first peak) 
effect, which is caused by the one term approximation functions used in the approximate-numerical methods as 
mentioned in [11].  

 

 

Fig. 3. Comparison of the different methods. 
 

After this validation, the dynamic responses of basalt/nickel composites under blast load are compared for 
different approximations as described above such as HLM and PLM. The structure is divided into 20 layers as 
described above. Table 2 gives all material properties of the 20 layers for HLM while Table 3 is for PLM for n=1.0. 

Table 2.Ceramic (Basalt) Volume Fractions and other material properties for HLM. 
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nth Layer Ceramic (Basalt) 
Volume Fraction 

VC% 

Modulus of 
Elasticity (GPa) 
(E1=E2) 

Shear Modulus 

G12 (GPa) 

Poisson’s 
Ratio 

ν 

Density 

ρ (kg/m3) 

1 100.00 25 4 0.09 2800.00 
2 94.74 34 8 0.10 3121.05 
3 89.47 43 12 0.11 3442.11 
4 84.21 53 16 0.12 3763.16 
5 78.95 62 20 0.14 4084.21 
6 73.68 71 24 0.15 4405.26 
7 68.42 80 28 0.16 4726.32 
8 63.16 89 32 0.17 5047.37 
9 57.89 99 36 0.19 5368.42 
10 52.63 108 40 0.20 5689.47 
11 47.37 117 44 0.21 6010.53 
12 42.11 126 48 0.22 6331.58 
13 36.84 136 52 0.24 6652.63 
14 31.58 145 56 0.25 6973.68 
15 26.32 154 60 0.26 7294.74 
16 21.05 163 64 0.27 7615.79 
17 15.79 172 68 0.28 7936.84 
18 10.53 182 72 0.30 8257.90 
19 5.26 191 76 0.31 8578.95 
20 0.00 200 80 0.32 8900.00 

Table 3.Ceramic (Basalt) Volume Fractions and other material properties for PLM (n=1). 

nth Layer Ceramic (Basalt) 
Volume Fraction 

VC% 

Modulus of 
Elasticity (GPa) 
(E1=E2) 

Shear Modulus 

G12 (GPa) 

Poisson’s 
Ratio 

ν 

Density 

ρ (kg/m3) 

1 100 25 4 0.09 2800 
2 92.5 38.12 9.7 0.10 3257 
3 87.5 46.87 13.5 0.11 3562 
4 82.5 55.62 17.3 0.12 3867 
5 77.5 64.37 21.1 0.14 4172 
6 72.5 73.12 24.9 0.15 4477 
7 67.5 81.87 28.7 0.16 4782 
8 62.5 90.62 32.5 0.17 5087 
9 57.5 99.37 36.3 0.19 5392 
10 52.5 108.12 40.1 0.20 5697 
11 47.5 116.87 43.9 0.21 6002 
12 42.5 125.62 47.7. 0.22 6307 
13 37.5 134.37 51.5 0.23 6612 
14 32.5 143.12 55.3 0.25 6917 
15 27.5 151.87 59.1 0.26 7222 
16 22.5 160.62 62.9 0.27 7527 
17 17.5 169.37 66.7 0.28 7832 
18 12.5 178.12 70.5 0.29 8137 
19 7.5 186.87 74.3 0.30. 8442 
20 0 200 80 0.32 8900 

 
Figure 4 shows the displacement time histories of the mid plane of the structure for Pm=1000 kPa. If n value, in 

Eq.(2) is taken as 1.0, the time histories for HLM and PLM should be the same, as can be seen from the Figure 4.  
Figure 5 shows the effect of different n values for PLM approximation. n values are taken as 0.5, 1.0, 2.0, and 

5.0. It can be said that the maximum deflection can be obtained for n=0.5 and the minimum deflection can be 
obtained for n=5.0. Also, the frequency increases while n value decreases. 

Figure 6 shows the displacement time histories for the various aspect ratios of the basalt/nickel FGM composite 
plate. The mid-plane area of the plate is preserved as a constant value for all the aspect ratios. The peak deflection of 
the plate decreases while the aspect ratio decreases. However, it can be seen that, the vibration frequency increases 
with the decreasing aspect ratio. 
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Fig. 4. Comparison of HLM and PLM for n=1.0. 

 

Fig. 5. Effect of different n values for PLM. 
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Fig. 6. Comparison of different aspect ratios. 
 
 

5. Conclusions 
 

 In this study, the nonlinear dynamic response of basalt/nickel FGM composite plates has been investigated 
under blast load. Two different approximations are taken into account to model the basalt/nickel FGM composite 
plates such as Homogenous Laminated Model (HLM) and Power-Law Model (PLM). von Kármán large deflection 
theory of thin plates are considered for the geometric nonlinearity effects. The boundary conditions are selected as 
all edges simply supported. The equations of motion for the plate are derived by the use of the virtual work 
principle. Approximate solutions are assumed for the space domain and substituted into the equations of motion. 
Then the Galerkin Method is used to obtain the nonlinear differential equations in the time domain. The Finite 
Difference Method is applied to solve the system of coupled nonlinear equations. The effects of two different 
approximations in order to model the basalt/nickel FGM composite plates have been investigated and the results are 
discussed. 

It can be concluded that the results of HLM and PLM approach is same for n=1.0 while the maximum 
deflection can be obtained for n=0.5 and the minimum deflection can be obtained for n=5.0. The vibration frequency 
is increasing while n value decreases. A parametric study is conducted for the basalt/nickel FGM composite plate 
subjected to blast load considering the effects of aspect ratio. While the aspect ratio of the plate decreases, the 
amplitude of the plate decreases, and the corresponding frequency increases.  

For the future studies, different blast load types, different material properties, damping effects and other 
boundary conditions could be taken into account. 
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