Additive Construction using Basalt Regolith Fines

Planetary surfaces are often covered in regolith (crushed rock), whose geologic origin is largely basalt. The lunar surface is made of small-particulate regolith and areas of boulders located in the vicinity  of  craters.  Regolith  composition  also  varies  with  location,  reflecting  the  local  bedrock  geology  and  the  nature  and  efficiency  of  the  micrometeorite-impact  processes.

Necessary rock studies of the gabbro and andesite basalt groups for the suitability as the raw material base for the production of continuous basalt fiber (CBF). A unique technique including laboratory melting and pilot-industrial melting at the high-tech equipment.

In  the  lowland  mare areas (suitable for habitation), the regolith is composed of small granules (20 – 100 microns average  size)  of  mare  basalt  and  volcanic  glass.  Impacting  micrometeorites  may  cause  local  melting, and the formation of larger glassy particles, and this regolith may contain 10-80% glass.

Studies   of   lunar   regolith   are   traditionally  conducted   with   lunar   regolith   simulant (reconstructed soil with compositions patterned after the lunar samples returned by Apollo). The  NASA  Kennedy  Space  Center  (KSC)  Granular  Mechanics  &  Regolith  Operations  (GMRO)  lab  has identified a low fidelity but economical geo-technical simulant designated as Black Point-1 (BP-1).  It was found at the site of the Arizona Desert Research and Technology Studies (RATS) analog field test site at the Black Point lava flow in adjacent basalt quarry spoil mounds.

This paper summarizes activities at KSC regarding the utilization of BP-1 basalt regolith and  comparative  work  with  lunar  basalt  simulant  JSC-1A  as  a  building  material  for  robotic  additive construction of large structures. In an effort to reduce the import or in-situ fabrication of binder  additives,  we  focused  this  work  on  in-situ  processing  of  regolith  for  construction  in  a  single-step process after its excavation. High-temperature melting of regolith involves techniques used in glassmaking and casting (with melts of lower density and higher viscosity than those of metals),  producing  basaltic  glass  with  high  durability  and  low  abrasive  wear.  Most  Lunar  simulants melt at temperatures above 1100°C, although melt processing of terrestrial regolith at 1500°C is not uncommon. These temperatures are achievable by laser heating or by using solar concentrators.  Similar  to  volcanic  magma,  the  cooling  rate  determines  the  crystallite  size  –  slower cooling develops larger crystals, and rapid quenching can result in fully amorphous glass.

Robert P. Mueller¹, Laurent Sibille², Paul E. Hintze³, Thomas C. Lippitt4, James G. Mantovani5, Matthew W. Nugent6, and Ivan I. Townsend7
1,4,5 NASA, Surface Systems Office, Kennedy Space Center, FL 32899
2 EASI (ESC), Applied Sciences and Technology, Kennedy Space Center, FL 32899
3 NASA, Materials Science Division, Kennedy Space Center, FL 32899
6 Sierra-Lobo (ESC), Applied Sciences  and Technology, Kennedy Space Center, FL 32899
7 Craig Technologies (ESC), Applied Sciences & Technology, Kennedy Space Center, FL 32899

Companies: NASA

Industries: Construction

Related Articles

Back to top button